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FIG. 1. Independent angular coordinates for r epresenting s train­
induced anisotropy energy . O! determines magnetization axis. 
n determines strain axis. I/! represents rotation of plane defined 
by O! and n about axis determined by O! • 

and the induced anisotropy energy 

Eme = ble(a~n~ + a~n~ + a~n~) 

+ 2b2e(ala2nln2 + a2a gn2ng + agalngn1)' (2) 

In this expression the uniaxial strain tensor eiJ = enjnJ 
is used. The exchange and demagnetizing energies are 
considered implicitly in the assumption of uniform mag­
netization. If this assumption is correct their contribu­
tion is considerable. The crystal anisotropy is ignored. 
It is small in the region of strains considered. 

To proceed with the averaging process, the six varia­
bles £1 1, £1 2 , as, nl , ng, and ng (a and n are unit vec­
tors) are expressed in terms of four independent angu­
lar variables as shown in Fig. 1. 21 Direction cosines 
are related to the angular variables by 

£1 1 = SinA cos{3, £1 2 = SinA sin{3, £1 3 = COSA, 

nl = cos~ SinA cos{3 + sin~(cosA cos{3 cos l/J + sin{3 sinl/J ), 

n2 = cos~ sinA cos{3 + sin~(cosA sin{3 cosl/J - cos{3 sinl/J), 

and 

ns = cos~ COSA - sin~ sinA cosl/J. 

Assuming the polycrystal is isotropic, 

h-2 SinA dA d{3 d l/J 

is th'e probability that the magnetization lies in the 
range A to A + dA and {3 to {3 + d{3, while the strain axis 
lies in a range l/J to l/J + dl/J • The average values of the 
terms appearing in the energy expression are obtained 
from 

1m = h'~'f; .fo2 • .fo2. f(~, A, (3, l/J) SinA dA d{3 dl/J. 

The resulting average induced anisotropy energy is 

Erne = Be COS2~ , 

(3) 

where B = tbl + tb2, or in terms of the usual magneto­
striction coefficients 
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It is instructive to recall that these formulas have been 
derived under the assumption that the strains are iden­
tical in all grains. This assumption leads to a polycrys­
talline magnetostriction coefficient 

(Cu - C I2)AIQO+ 3C44AIlI 
3C 44 + C 11 - C 12 

the fractional striction of a material along the direction 
in which it is magnetized. This formula may be com­
pared with the usual polycrystalline magnetostriction 
formula 

derived under the assumption that each grain behaves 
independently mechanically. Obviously, for isotropy 
(C ll - C 12 = 2C44), the two formulas are identical. 

The angle e between the direction of the applied field 
and the direction of the magnetization is the comple­
ment of ~. The total thermodynamic energy expression 
becomes 

(4) 

The magnetization curve obtained from Eq. (4) for pos­
itive magnetoelastic constants is 

M / M s = 1, H. > - 2Be/ M s 

= - (M. / 2Be)H. , H. < - 2Be/ M s ' 
( 5) 

This is intermediate between the extremes obtained for 
the (100) problem and the (111) problem for the equiva­
lent single-crystal behavior derived in the preceding 
paper. 6 

B. Independent Grain Assumption 

It is quite possible that the uniform magnetization field 
demanded by the previous assumption does not occur. 
The isolated single-particle critical size within which a 
single domain exists for YIG is less than 1 jJ.. This 
critical size will increase for a bounded crystallite due 
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FIG. 2. Magnetization curves in polycrystalline YIG predicted 
from the independent and interacting grain theories. Shown for 
comparison are the single-crystal magnetization curves from 
the (100) and (111) problems. 



SHOCK-INDUCED ANISOTROPY. II. 1951 

TABLE I. Shock demagnetization data. 

Shot No. Projectile Projectile Mean strain Magnetic field Induced • emf Specimen width 
velocity material in YIG (Oe) (V) (cm) 

(mm!J.lsec) 

70-016 0.598 
70-030 c 0.602 
70-039 0.600 
70-053 0.601 
70-057 0.596 
70-059 0.598 
71-002 0.597 
71-013 0.598 

71-015 0.551 
71-016 0.555 

Plexiglass 
Rohm 

and 
Haas 

type-G 

Aluminum 
oxide 

WESGO-995 

-0.0083 

-0.0162 

. aThis emf was developed across 10-turn pickup coils with the 
exception of shot No. 70-016 which used a 5-turn pickup coil. 

bCalculated with an Ms of 128 G. 

to a substantial decrease in surface magnet poles at the 
grain boundary, but not by more than an order of mag­
nitude. 17 The grain size of the material used.in the 
present work ranges from 5 to 25 p.. This suggests that 
perhaps an intragrain domain structure will nucleate in 
order to reduce magnetic poles which would otherwise 
collect he'avily along grain boundaries. 17,22 This latter 
case holds if the energy associated with domain walls 
is small compared to other magnetic energies. With an 
intragrain domain structure there is not a uniform 
magnetization field as was demanded by the interacting 
grain assumption. In this case, it is more likely that 
the magnetization in each grain independently seeks a 
value depending only on the orientation of its crystallo­
graphic axis with the external fields. 

A simple consideration shows that the independent grain 
assumption leads to a lower average magnetoelastic 
energy than the interacting grain theory. The energy 
from the interacting grain theory contained a part re­
quired to bring individual grains into their independent 
equilibrium positions and also a part required to bring 
these grains into collinear alignment. The latter contri­
bution would not be present in the independent grain as­
sumption. 

The independent grain assumption is each crystallite 
seeks equilibrium subject only to the requirements of 
the induced anisotropy field and the external magnetic 
field, independent of the behavior of neighboring crys­
tallites. A rigorous approach to the averaging proce­
dure would be to express the magnetization direction 
cosines in Eq. (2) in terms of polar coordinates A and {3. 
The total energy expression should then be minimized 
with respect to A and {3 for an arbitrarily oriented crys­
tallite. The resulting magnetization projection along the 
direction of the applied field should then be averaged 
over all crystal orientations. This problem, which has 
been encountered previously in another context, cannot 
be solved explicitly for A and {3 and the solution has not 
been completed. 14 

An alternative approach, in the spirit of calculations 
made by Lee,23 is to write the average normalized mag­
netization 

M/Ms = (cosO)av= jF(o,) cosO do,/(jF(o,) d 0,)-1 (6) 

in terms of an unknown distribution function. F(o,) is the 

359 20.5 
245 
258 62.4 
588 11. 2 
494 21. 6 
680 4.6 
421 30.3 
787 2.5 

660 48.5 
935 20.5 

1.060 
1.063 
1. 067 
1. 075 
1.085 
1. 081 
1. 023 
1. 081 

1. 068 
1.032 

0.332 ± 0.066 
0.602 ± 0.100 
0.515±0.033 
0.089 ± O. 034 
0.173±0.037 
0.039±0.015 
0.260 ± O. 055 
0.018 ± 0.010 

0.400 ± 0.030 
0.173±0.038 

COn this shot, the solenoid was prematurely shorted. These val­
ues were obtained by estimating the field due to residual cur­
rent and knowledge of the circuit inductances and resistances. 

equilibrium distribution of magnetization directions ov­
er all crystal orientations for a given applied field He 
and state of strain e. The following distribution function 
is assumed: 

=0, otherwise. 

The angles 01 and O2 are the extremes defined by the 
(100) problem and the (111) problem in the preceding 
paper. They are 

cosO 1= (M.!2b1e)He 

and 

(7) 

(8) 

(9) 

A similar distribution function has been used by Bo­
zorth24 in an attempt to explain low-remanence values in 
certain alloys and by Lee23 to explain magnetostriction 
curves over the whole range of magnetization to satura­
tion. In the work of Lee,23 results using the uniform 
distribution function and a distribution function predicted 
theoretically by Brown25 were compared. Experimental 
data strongly supported the uniform distribution function. 

It must be realized that this approach will yield an ap­
proximate solution to a problem which has not, as yet, 
been solved exactly. The prediction is subject to the 
limitations of this assumption. Equation (6) becomes 

(cosO)av= !S:2 cosO sinO dO(!s~2 sinO dOtl 

(10) 

where X= cosO. A problem occurs when cosOl is unity, 
at which point the first grains reach saturation. To 
freeze the upper limit of integration artificially con­
strains the distribution function. This problem can be 
circumvented by allowing the upper limit to continue 
but demanding that the respective contribution to 
(cosO)"y be unity. This gives 

(cosO)av= (j,,,> dx + j/;l dx)(jx;l dx)"!, x2 ~ 1 ~ Xl 
= Ix;l x dxU:;l dxt1 , Xl < 1. (11) 

Performing the required integration, the predicted 
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